Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.823
1.
Front Microbiol ; 15: 1379625, 2024.
Article En | MEDLINE | ID: mdl-38690370

Urinary tract infections (UTIs) represent a significant challenge in clinical practice, with recurrent forms (rUTIs) posing a continual threat to patient health. Escherichia coli (E. coli) is the primary culprit in a vast majority of UTIs, both community-acquired and hospital-acquired, underscoring its clinical importance. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. The type II TA system, prevalent in prokaryotes, emerges as a critical player in stress response, biofilm formation, and cell dormancy. ccdAB, the first identified type II TA module, is renowned for maintaining plasmid stability. This paper aims to unravel the physiological role of the ccdAB in rUTIs caused by E. coli, delving into bacterial characteristics crucial for understanding and managing this disease. We investigated UPEC-induced rUTIs, examining changes in type II TA distribution and number, phylogenetic distribution, and Multi-Locus Sequence Typing (MLST) using polymerase chain reaction (PCR). Furthermore, our findings revealed that the induction of ccdB expression in E. coli BL21 (DE3) inhibited bacterial growth, observed that the expression of both ccdAB and ccdB in E. coli BL21 (DE3) led to an increase in biofilm formation, and confirmed that ccdAB plays a role in the development of persistent bacteria in urinary tract infections. Our findings could pave the way for novel therapeutic approaches targeting these systems, potentially reducing the prevalence of rUTIs. Through this investigation, we hope to contribute significantly to the global effort to combat the persistent challenge of rUTIs.

2.
Aging (Albany NY) ; 162024 May 08.
Article En | MEDLINE | ID: mdl-38728242

The management of patients with advanced non-small cell lung cancer (NSCLC) presents significant challenges due to cancer cells' intricate and heterogeneous nature. Programmed cell death (PCD) pathways are crucial in diverse biological processes. Nevertheless, the prognostic significance of cell death in NSCLC remains incompletely understood. Our study aims to investigate the prognostic importance of PCD genes and their ability to precisely stratify and evaluate the survival outcomes of patients with advanced NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), univariate and multivariate Cox regression analyses for prognostic gene screening. Ultimately, we identified seven PCD-related genes to establish the PCD-related risk score for the advanced NSCLC model (PRAN), effectively stratifying overall survival (OS) in patients with advanced NSCLC. Multivariate Cox regression analysis revealed that the PRAN was the independent prognostic factor than clinical baseline factors. It was positively related to specific metabolic pathways, including hexosamine biosynthesis pathways, which play crucial roles in reprogramming cancer cell metabolism. Furthermore, drug prediction for different PRAN risk groups identified several sensitive drugs explicitly targeting the cell death pathway. Molecular docking analysis suggested the potential therapeutic efficacy of navitoclax in NSCLC, as it demonstrated strong binding with the amino acid residues of C-C motif chemokine ligand 14 (CCL14), carboxypeptidase A3 (CPA3), and C-X3-C motif chemokine receptor 1 (CX3CR1) proteins. The PRAN provides a robust personalized treatment and survival assessment tool in advanced NSCLC patients. Furthermore, identifying sensitive drugs for distinct PRAN risk groups holds promise for advancing targeted therapies in NSCLC.

3.
PLoS One ; 19(5): e0302839, 2024.
Article En | MEDLINE | ID: mdl-38696506

PURPOSES: Fractures of the inferior patellar pole, unlike other patellar fractures, present challenges for traditional surgical fixation methods. This article introduces the clinical technique and outcomes of using Kirschner wire tension band combined with anchor screw cross-stitch fixation for comminuted inferior patellar pole fractures. METHODS: This retrospective case series study included 14 patients with comminuted inferior patellar pole fractures treated at our institution from September 1, 2020, to April 30, 2022. All patients underwent surgery using the Kirschner wire tension band with anchor screw cross-stitch technique. Follow-up assessments involved postoperative X-rays to evaluate fracture healing, as well as clinical parameters such as healing time, Visual Analog Scale (VAS) scores, range of motion (ROM), and Bostman scores. RESULTS: All patients were followed for an average of over 12 months, with no cases of internal fixation failure. Knee joint stability and function were excellent. X-rays revealed an average healing time of approximately 10.79 ± 1.53 weeks, hospitalization lasted 5.64 ± 1.15 days, surgery took approximately 37.86 ± 5.32 minutes, and intraoperative blood loss was 33.29 ± 8.15 ml. One patient experienced irritation from the internal fixation material. At the final follow-up, the Bostman score averaged 28.29 ± 0.83, knee joint flexion reached 131.07° ± 4.88°, all patients achieved full knee extension, and the VAS score was 0.36 ± 0.63. CONCLUSION: Kirschner wire tension band with anchor screw cross-stitch fixation for comminuted inferior patellar pole fractures delivered satisfactory clinical outcomes. This surgical method, characterized by its simplicity and reliability, is a valuable addition to clinical practice.


Bone Wires , Fracture Fixation, Internal , Fractures, Comminuted , Patella , Humans , Male , Female , Adult , Patella/surgery , Patella/injuries , Fractures, Comminuted/surgery , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Retrospective Studies , Middle Aged , Range of Motion, Articular , Treatment Outcome , Fractures, Bone/surgery , Fracture Healing , Knee Joint/surgery , Knee Joint/physiopathology , Young Adult , Bone Screws , Suture Anchors
4.
Adv Mater ; : e2400657, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719210

The growing demand for wearable devices has sparked a significant interest in ferroelectret films. They possess flexibility and exceptional piezoelectric properties due to strong macroscopic-dipoles formed by charges trapped at the interface of their internal cavities. This review of ferroelectrets focuses on the latest progress in fabrication techniques for high temperature resistant ferroelectrets with regular and engineered cavities, strategies for optimizing their piezoelectric performance, and novel applications. The charging mechanisms of bipolar and unipolar ferroelectrets with closed and open-cavity structures are explained first. Next, the preparation and piezoelectric behavior of ferroelectret films with closed, open and regular cavity structures using various materials are discussed. Three widely used models for predicting the piezoelectric coefficients (d33) are outlined. Methods for enhancing the piezoelectric performance such as optimized cavity design, utilization of fabric electrodes, injection of additional ions, application of DC bias voltage and synergy of foam structure and ferroelectric effect are illustrated. A variety of applications of ferroelectret films in acoustic devices, wearable monitors, pressure sensors and energy harvesters are presented. Finally, the future development trends of ferroelectrets towards fabrication and performance optimization are summarized along with its potential for integration with intelligent systems and large-scale preparation. This article is protected by copyright. All rights reserved.

5.
Vet Res ; 55(1): 56, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715098

The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.


Histones , Interleukin-8 , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Animals , Swine , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Porcine respiratory and reproductive syndrome virus/physiology , Interleukin-8/metabolism , Interleukin-8/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Histones/metabolism , Histones/genetics , Macrophages, Alveolar/virology , Macrophages, Alveolar/metabolism , Gene Expression Regulation
6.
Small ; : e2402105, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727184

The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators. Therefore, fundamental mass-transfer approach for optimizing SSG evaporators offers new horizons. Herein, a universal multi-force-fields-based method is presented to regularize membrane channels, which can mechanically eliminate inherent interlayer stackings and defects. Both characterization and simulation demonstrate the effectiveness of this approach across different scales and explain the intrinsic mechanism of mass-transfer enhancement. When combined with a structurally optimized substrate, the 4Laponite@GO-1 achieves evaporation rate of 2.782 kg m-2 h-1 with 94.48% evaporation efficiency, which is comparable with most 3D evaporators. Moreover, the optimized membrane exhibits excellent cycling stability (10 days) and tolerance to extreme conditions (pH 1-14, salinity 1%-15%), verifies the robust structural stability of regularized channels. This optimization strategy provides simple but efficient way to enhance the SSG performance of GO-based membranes, facilitating their extensive application in sustainable water purification technologies.

7.
Mikrochim Acta ; 191(6): 300, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709399

Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of ßVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.


Biosensing Techniques , Glycated Hemoglobin , Glycated Hemoglobin/analysis , Biosensing Techniques/methods , Humans , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood , Blood Glucose/analysis
8.
Front Immunol ; 15: 1359041, 2024.
Article En | MEDLINE | ID: mdl-38711497

Background: Immunotherapy targeting factors related to immune imbalance has been widely employed for RA treatment. This study aimed to evaluate the efficacy and safety of low-dose interleukin (IL)-2 combined with tocilizumab (TCZ), a biologics targeting IL-6, in RA patients. Methods: Fifty adults with active RA who met the criteria with complete clinical data were recruited, and divided into three groups: control group (n=15), IL-2 group (n=26), and IL-2+TCZ group (n=9). In addition to basic treatment, participants in the IL-2 group received IL-2 (0.5 MIU/day), while participants in the IL-2+TCZ group received IL-2 (0.5 MIU/day) along with one dose of TCZ (8 mg/kg, maximum dose: 800 mg). All subjects underwent condition assessment, laboratory indicators and safety indicators detection, and records before treatment and one week after treatment. Results: Compared with the baseline, all three groups showed significant improvement in disease conditions, as evidenced by significantly reduced disease activity indicators. The low-dose IL-2 and combination treatment groups demonstrated a violent proliferation of Tregs, while the absolute number of Th1, Th2, and Th17 cells in the latter group showed a decreasing trend. The decrease in the Th17/Treg ratio was more pronounced in the IL-2+TCZ groups. No significant adverse reactions were observed in any of the patients. Conclusion: Exogenous low doses of IL-2 combined TCZ were found to be safe and effective in reducing effector T cells and appropriately increasing Treg levels in RA patients with high effector T cell levels. This approach helps regulate immune homeostasis and contributes to the prevention of disease deterioration. Clinical trial registration: https://www.chictr.org.cn/showprojEN.html?proj=13909, identifier ChiCTR-INR-16009546.


Antibodies, Monoclonal, Humanized , Arthritis, Rheumatoid , Drug Therapy, Combination , Interleukin-2 , Humans , Male , Female , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Interleukin-2/administration & dosage , Interleukin-2/adverse effects , Interleukin-2/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Middle Aged , Adult , Treatment Outcome , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/adverse effects , Aged
9.
Med Oncol ; 41(6): 141, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714554

IGFBP-3 is aberrantly expressed in many tumor types, and its serum and tumor tissue levels provide auxiliary information for assessing the degree of tumor malignancy and patient prognosis, making it a potential therapeutic target for human malignancies and conferring it remarkable clinical value for determining patient prognosis. In this review, we provide a comprehensive overview of the aberrant expression, diverse biological effects, and clinical implications of IGFBP-3 in tumors and its role as a potential prognostic marker and therapeutic target for tumors. In addition, we summarize the signaling pathways through which IGFBP-3 exerts its effects. IGFBP-3 comprises an N-terminal, an intermediate region, and a C-terminal structural domain, each exerting different biological effects in several tumor cell types in an IGF-dependent/non-independent manner. IGFBP-3 shares an intricate relationship with the tumor microenvironment, thereby affecting tumor growth. Overall, IGFBP-3 is an essential regulatory factor that mediates tumor occurrence and progression. Gaining deeper insights into the fundamental characteristics of IGFBP-3 and its role in various tumor types will provide new perspectives and allow for the development of novel strategies for cancer diagnosis, treatment, and prognostic evaluation.


Biomarkers, Tumor , Disease Progression , Insulin-Like Growth Factor Binding Protein 3 , Neoplasms , Humans , Insulin-Like Growth Factor Binding Protein 3/metabolism , Neoplasms/metabolism , Neoplasms/diagnosis , Neoplasms/pathology , Neoplasms/therapy , Biomarkers, Tumor/metabolism , Prognosis , Signal Transduction , Tumor Microenvironment , Animals
10.
Anal Methods ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38717230

Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.

11.
Phys Rev Lett ; 132(16): 166002, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38701470

Superconductivity has been one of the focal points in medium and high-entropy alloys (MEAs-HEAs) since the discovery of the body-centered cubic (bcc) HEA superconductor in 2014. Until now, the superconducting transition temperature (T_{c}) of most MEA and HEA superconductors has not exceeded 10 K. Here, we report a TaNbHfZr bulk MEA superconductor crystallized in the BCC structure with a T_{c} of 15.3 K which set a new record. During compression, T_{c} follows a dome-shaped curve. It reaches a broad maximum of roughly 15 K at around 70 GPa before decreasing to 9.3 K at 157.2 GPa. First-principles calculations attribute the dome-shaped curve to two competing effects, that is, the enhancement of the logarithmically averaged characteristic phonon frequency ω_{log} and the simultaneous suppression of the electron-phonon coupling constant λ. Thus, TaNbHfZr MEA may have a promising future for studying the underlying quantum physics, as well as developing new applications under extreme conditions.

12.
Physiol Plant ; 176(2): e14266, 2024.
Article En | MEDLINE | ID: mdl-38558467

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Arachis , Seedlings , Arachis/genetics , Seedlings/genetics , Sodium Chloride , Multiomics , Gene Expression Profiling , Gene Expression Regulation, Plant
13.
Front Pharmacol ; 15: 1353662, 2024.
Article En | MEDLINE | ID: mdl-38576488

Purpose: This study aimed to assess the efficacy and safety of Panax notoginseng saponin (PNS) injection, when combined with conventional treatment (CT), for acute myocardial infarction (AMI). Methods: Comprehensive searches were conducted in seven databases from inception until 28 September 2023. The search aimed to identify relevant randomized controlled trials (RCTs) focusing on PNS injection in the context of AMI. This meta-analysis adhered to the PRISMA 2020 guidelines, and its protocol was registered with PROSPERO (number: CRD42023480131). Result: Twenty RCTs involving 1,881 patients were included. The meta-analysis revealed that PNS injection, used adjunctively with CT, significantly improved treatment outcomes compared to CT alone, as evidenced by the following points: (1) enhanced total effective rate [OR = 3.09, p < 0.05]; (2) decreased incidence of major adverse cardiac events [OR = 0.32, p < 0.05]; (3) reduction in myocardial infarct size [MD = -6.53, p < 0.05]; (4) lower ST segment elevation amplitude [MD = -0.48, p < 0.05]; (5) mitigated myocardial injury as indicated by decreased levels of creatine kinase isoenzymes [MD = -11.19, p < 0.05], cardiac troponin T [MD = -3.01, p < 0.05], and cardiac troponin I [MD = -10.72, p < 0.05]; (6) enhanced cardiac function, reflected in improved brain natriuretic peptide [MD = -91.57, p < 0.05], left ventricular ejection fraction [MD = 5.91, p < 0.05], left ventricular end-diastolic dimension [MD = -3.08, p < 0.05], and cardiac output [MD = 0.53, p < 0.05]; (7) reduced inflammatory response, as shown by lower levels of C-reactive protein [MD = -2.99, p < 0.05], tumor necrosis factor-α [MD = -6.47, p < 0.05], interleukin-6 [MD = -24.46, p < 0.05], and pentraxin-3 [MD = -2.26, p < 0.05]; (8) improved vascular endothelial function, demonstrated by decreased endothelin-1 [MD = -20.56, p < 0.05] and increased nitric oxide [MD = 1.33, p < 0.05]; (9) alleviated oxidative stress, evidenced by increased superoxide dismutase levels [MD = 25.84, p < 0.05]; (10) no significant difference in adverse events [OR = 1.00, p = 1.00]. Conclusion: This study highlighted the efficacy and safety of adjunctive PNS injections in enhancing AMI patient outcomes beyond CT alone. Future RCTs need to solidify these findings through rigorous methods. Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/), identifier (CRD42023480131).

14.
Neurol Res ; : 1-6, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561007

BACKGROUND: Enterprise stent was approved for the treatment of wide-necked intracranial aneurysms. However, it has been widely used in the endovascular treatment of intracranial artery stenosis, which is still controversial. The purpose of this study was to evaluate the safety and efficiency of the Enterprise stent in the endovascular treatment of intracranial artery stenosis disease. METHODS: We conducted a retrospective case series of 107 patients with intracranial artery stenosis who received Enterprise stent implantation at Nanjing Drum Tower Hospital from January 2020 to December 2022. The rates of recanalization, perioperative complications, in-stent restenosis at 3-12 months and stroke recurrence were assessed for endovascular treatment. RESULTS: A total of 107 individuals were included in this study, 88 were followed up, and 19 (17.8%) patients were lost to follow-up. The operation success rate was 100%, During the procedure,4(3.7%)patients had vasospasm, and 2(1.9%) patients showed symptomatic bleeding. The overall perioperative complication rate was 5.6%, including 2.8% distal artery embolism, 0.9% in-stent thrombosis, and 1.9% symptomatic bleeding. 88 (82.2%) patients were followed up from 3 to 12 months, of whom 12 (13.6%) had in-stent restenosis, 4 (4.7%) recurrent strokes and 2 died of pulmonary infection caused by COVID-19. Patients were divided into 3 groups according to the cerebral artery, including the middle cerebral artery group, internal carotid artery group, and vertebrobasilar artery group. CONCLUSIONS: In this study, the placement of the Enterprise stent in patients with symptomatic non-acute intracranial stenosis was successful. However, the occurrence of periprocedural and long-term complications after stenting remains of high concern.

15.
Ecol Evol ; 14(4): e11219, 2024 Apr.
Article En | MEDLINE | ID: mdl-38628920

Fallback foods (FBF), categorized into staple and filler types, are suboptimal food sources chosen by animals in response to a scarcity of preferred food items during specific periods. Using lichens as FBF by Yunnan snub-nosed monkeys (Rhinopithecus bieti) represents a distinctive ecological adaptation and evolutionary development within nonhuman primates. This study delves into the annual dietary choices of the species to address issues, elucidate the nutritional value, and understand the ecological significance of lichens for this primate species, which resides at the highest altitudes and experiences the coldest weather among global primates. The findings reveal that the lichens consumed by the monkeys serve as the staple FBF, with Bryoria spp. and Usnea longissima being the primary dietary species. The former is the preferred choice, providing higher digestible fiber (neutral detergent fiber) levels but lower tannin, fat, ADF, and energy levels. During the dry season, lichens dominate as the monkeys' primary food and nutritional resources. In the wet season, they act as a fundamental food selection rather than an ideal dietary choice, substituting nutrients from fruits, seeds, and leaves. Compared to other Asian colobine counterparts, this species exhibits the highest lichen consumption but the lowest proportions of leaves, flowers, and seeds. This study provides valuable evidence and information for developing or amending conservation strategies and guidelines for the dietary management of captive breeding of monkeys, one of the world's critically endangered primate species.

16.
Front Immunol ; 15: 1368904, 2024.
Article En | MEDLINE | ID: mdl-38629070

Background: Coronary artery disease (CAD) is still a lethal disease worldwide. This study aims to identify clinically relevant diagnostic biomarker in CAD and explore the potential medications on CAD. Methods: GSE42148, GSE180081, and GSE12288 were downloaded as the training and validation cohorts to identify the candidate genes by constructing the weighted gene co-expression network analysis. Functional enrichment analysis was utilized to determine the functional roles of these genes. Machine learning algorithms determined the candidate biomarkers. Hub genes were then selected and validated by nomogram and the receiver operating curve. Using CIBERSORTx, the hub genes were further discovered in relation to immune cell infiltrability, and molecules associated with immune active families were analyzed by correlation analysis. Drug screening and molecular docking were used to determine medications that target the four genes. Results: There were 191 and 230 key genes respectively identified by the weighted gene co-expression network analysis in two modules. A total of 421 key genes found enriched pathways by functional enrichment analysis. Candidate immune-related genes were then screened and identified by the random forest model and the eXtreme Gradient Boosting algorithm. Finally, four hub genes, namely, CSF3R, EED, HSPA1B, and IL17RA, were obtained and used to establish the nomogram model. The receiver operating curve, the area under curve, and the calibration curve were all used to validate the accuracy and usefulness of the diagnostic model. Immune cell infiltrating was examined, and CAD patients were then divided into high- and low-expression groups for further gene set enrichment analysis. Through targeting the hub genes, we also found potential drugs for anti-CAD treatment by using the molecular docking method. Conclusions: CSF3R, EED, HSPA1B, and IL17RA are potential diagnostic biomarkers for CAD. CAD pathogenesis is greatly influenced by patterns of immune cell infiltration. Promising drugs offers new prospects for the development of CAD therapy.


Coronary Artery Disease , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , Molecular Docking Simulation , Nomograms , Algorithms , Machine Learning
17.
Mater Today Bio ; 26: 101038, 2024 Jun.
Article En | MEDLINE | ID: mdl-38638704

The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.

18.
Curr Med Imaging ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38639282

BACKGROUND: Endometrial Cancer (EC) is a highly heterogeneous cancer comprising both histological and molecular subtypes. Using a non-invasive modality method to trigger these subtypes as early as possible can aid clinicians in establishing individualized treatment. PURPOSE: The study aimed to clarify the value of the Apparent Diffusion Coefficient (ADC) of EC MRI in determining molecular subtypes. MATERIAL AND METHODS: We retrospectively recruited 109 patients with pathologically proven EC (78 endometrioid cancers and 31 non-endometrioid cancers) with available molecular classification from a tertiary centre. MRI was prospectively performed a month prior to surgery; images were blindly interpreted by two experienced radiologists with consensus reading. The ADC value was measured by an experienced radiologist on the commercially available processing workstation. Interoperator measurement consistency was calculated. RESULTS: Our sample comprised 17 PLOE, 32 MSI-H, 31 NSMP, and 29 P53abn ECs. Clinical information did not differ significantly among the groups. The maximum diameter and volume of the lesions differed among the groups. The ADC value in the maximal area (ADCarea) or region of interest (ROI, ADCroi) in the P53abn group was higher than that in the other groups (894.0 ±12.6 and 817.5 ± 83.3 x10-6 mm2/s). The ADC mean values were significantly different between the P53abn group and the other groups (P = 0.000). The nomogram showed the highest discriminative ability to distinguish P53abn EC from other types (AUC: 0.859). CONCLUSION: Our results have suggested the quantitative MR characteristics (ADC values) derived from preoperative EC MRI to provide useful information in preoperatively determining P53abn cancer.

19.
Quant Imaging Med Surg ; 14(4): 3121-3130, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38617156

Background: Hysterectomy places a considerable physical and mental burden on young female patients with congenital cervical and complete vaginal atresia. Thus, it is necessary to develop a method to detach the obstruction and simultaneously preserve the vagina and uterus in these patients. This study sought to evaluate the efficacy and safety of laparoscopic vaginoplasty using peritoneal flaps and cervicoplasty in patients with congenital cervical and complete vaginal atresia. Methods: Between April 2013 and June 2022, nine patients with congenital cervical and complete vaginal atresia at Henan Provincial People's Hospital were enrolled in this prospective study. All patients were treated with laparoscopic vaginoplasty using peritoneal flaps and cervicoplasty. Baseline clinical data (e.g., age and uterus size) were collected. The surgical success rate and adverse events were assessed. Results: The nine enrolled patients had a median age of 15.0 [interquartile range (IQR), 14.0-18.0] years, and five of these patients had pelvic adhesions. The surgeries were successful in all (9/9) patients, with the vagina, uterus, and a normal menstrual cycle being preserved. After a median follow-up duration of 48 months, the neovaginas had a median length of 7.5 cm. Postoperative complications occurred in three of patients and were cured with the appropriate treatment. The five married patients reported being satisfied with their sex life. Conclusions: The study preliminarily demonstrated the efficacy of laparoscopic vaginoplasty using peritoneal flaps and cervicoplasty in patients with congenital cervical and complete vaginal atresia. However, due to the small sample size, lack of a control group, and relatively high incidence of adverse events, further studies are still needed to verify these results. Regardless, our findings establish an approach for preserving both the vagina and uterus for patients with congenital cervical and complete vaginal atresia.

20.
Front Microbiol ; 15: 1361860, 2024.
Article En | MEDLINE | ID: mdl-38585699

Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.

...